Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 122(2): 610-630, 2018 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-29257685

RESUMO

N-Heptane and 2,2,4-trimethylpentane (isooctane) are the key species in the modeling of ignition of hydrocarbon-based fuel formulations. Isooctane is knock-resistant whereas n-heptane is a very knock-prone hydrocarbon. It has been suggested that interconversion of their associated alkylperoxy and hydroperoxyalkyl species via hydrogen-transfer isomerization reaction is the key step to understand their different knocking behavior. In this work, the kinetics of unimolecular hydrogen-transfer reactions of n-heptylperoxy and isooctylperoxy are determined using canonical variational transition-state theory and multidimensional small curvature tunneling. Internal rotation of involved molecules is taken explicitly into account in the molecular partition function. The rate coefficients are calculated in the temperature range 300-900 K, relevant to low-temperature autoignition. The concerted HO2 elimination is an important reaction that competes with some H-transfer and is associated with chain termination. Thus, the branching ratio between these reaction channels is analyzed. We show that variational and multidimensional tunneling effects cannot be neglected for the H-transfer reaction. In particular, the pre-exponential Arrhenius fitting parameter derived from our rate constants shows a strong dependence on the temperature, because tunneling increases quickly at temperatures below 500 K. On the basis of our results, the existing qualitative model for the reasons for different knock behavior observed for n-heptane and isooctane is quantitatively validated at the molecular level.

2.
Chem Biol Drug Des ; 81(2): 185-97, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22985449

RESUMO

Recently, many efforts have been made to develop N-methyl-D-aspartic acid receptor antagonists for treating different pathological conditions such as thrombo-embolic stroke, traumatic head injury, Huntington's, Parkinson's, and Alzheimer's diseases). However, as side-effects limit the use of most antagonists, new drugs are still required. In this work, we performed a (quantitative) structure-activity relationship analysis of 17 phenyl-amidine derivatives (1a-1q), reported as N-methyl-D-aspartic acid receptor antagonists, and used this data to rationally design the triazolyl-amidines. The best (quantitative) structure-activity relationship model constructed by multiple linear regression analysis presented high data fitting (R = 0.914) was able to explain 83.6% of the biological data variance (R(2) = 0.836), presented a satisfactory internal predictive ability (Q(2) = 0.609) and contained the descriptors (E(HOMO), Ovality and cLogP). Our assays confirmed that glutamate promotes an extensive cell death in avian neurons (77%) and 2a and 2b protected the neurons from the glutamate effect (from 77% to 27% and 45%, respectively). The results of neurotoxicity and cytotoxicity on Vero cells suggested the favorable profile of 2a and 2b. Also, the molecular modeling used to predict the activity, the interaction with the receptor and the pharmacokinetic and toxicity of the triazolyl-amidines pointed them as a promising class for further exploration as N-methyl-D-aspartic acid receptor antagonists.


Assuntos
Amidinas/química , Fármacos Neuroprotetores/química , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Triazóis/química , Amidinas/farmacologia , Animais , Morte Celular , Chlorocebus aethiops , Ácido Glutâmico/toxicidade , Simulação de Acoplamento Molecular , Fármacos Neuroprotetores/farmacologia , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/metabolismo , Neurônios Retinianos/citologia , Neurônios Retinianos/efeitos dos fármacos , Relação Estrutura-Atividade , Triazóis/farmacologia , Células Vero
3.
J Phys Chem A ; 115(44): 12259-70, 2011 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-21995269

RESUMO

A thorough analysis of the electronic structure and thermodynamic aspects of Grignard reagents and its associated equilibrium composition in ethereal solutions is performed. Considering methylmagnesium halides containing fluorine, chlorine, and bromine, we studied the neutral, charged, and radical species associated with their chemical equilibrium in solution. The ethereal solvents considered, tetrahydrofuran (THF) and ethyl ether (Et(2)O), were modeled using the polarizable continuum model (PCM) and also by explicit coordination to the Mg atoms in a cluster. The chemical bonding of the species that constitute the Grignard reagent is analyzed in detail with generalized valence bond (GVB) wave functions. Equilibrium constants were calculated with the DFT/M06 functional and GVB wave functions, yielding similar results. According to our calculations and existing kinetic and electrochemical evidence, the species R(•), R(-), (•)MgX, and RMgX(2)(-) must be present in low concentration in the equilibrium. We conclude that depending on the halogen, a different route must be followed to produce the relevant equilibrium species in each case. Chloride and bromide must preferably follow a "radical-based" pathway, and fluoride must follow a "carbanionic-based" pathway. These different mechanisms are contrasted against the available experimental results and are proven to be consistent with the existing thermodynamic data on the Grignard reagent equilibria.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...